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Waveguides with the

Method of Lines and Absorbing

Boundary Conditions
A. Dreher and R. Pregla

Abstract—The method of lines is extended to analyze planar
waveguides with open boundaries. The efficiency of using ab-
sorbing boundary conditions is demonstrated by the calculation
of the effective permittivity of a single microstrip line.

I. INTRODUCTION

T O ANALYZE planar waveguide structures numerically,

they must be enclosed by walls to limit the area of

discretization. The use of electric or magnetic walls produces

errors, since the corresponding tangential field components

are set to zero. Radiation effects cannot be taken into ac-

count. To overcome this difficulty the free space can be

simulated at an arbitrarily fixed position by using absorbing

boundary conditions [1]. In the following these conditions are

adapted to the method of lines [4]. An additional advantage

of the method of lines is, that only two of these boundaries in

the direction of discretization are necessary since the remain-

ing system of ordinary differential equations is solved analyti-

cally.

11. ANALYSIS

A. Factorization of the Helmholtz Operator

Assuming a wave propagation exp( –~kz z) in z-direction,

the wave equation for the two independent field components

can be written as

LIJ=(D:+D; +qJ+=o

with

and the normalizations

(1)

where ~ stands for ez or h ~, respectively. The Hehnholtz

operator L can be factored so that

L$=L+L-$=O (2)
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Since in general Cd will be complex, the branch cut of the
square root function must be chosen so that the plus sign is

related to waves traveling in the x-direction, the minus sign

to those traveling in the – x-direction. Hence the condition

for outgoing waves is.

fR&>o
while

sj~<o

holds for exponentially decaying waves if 2?&= O and no

propagation takes place. The conditions

L-=O (3)

at the left and

L+= O (4)

at the right boundary exclude solutions of (1) which are

related to waves traveling backward. This is in accordance

with Somrnerfeld’s condition of radiation [3]. In this way, (3)

and (4) simulate exactly absorbing boundaries for waves

incident at any angle from the interior of the enclosed

structure.

B. Discretization

To use these boundary conditions in connection with the

method of lines, the radical is approximated by a polynomial

of the form

m =po +p2s2 (5)

on the interval [ – 1,1]. The choice of the coefficients PO and

p2 depends on the method of interpolation and determines the

two angles of exact absorption [2]. To keep the advantageous

procedure with shifted line systems [4] the boundary condi-

tions
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Y+ for # = HZ. Moreover the abbreviations

hZOl hzl... . . .h
z(N+l ) h

z(N+2)
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Fig. 1. Cross section of investigated microstrip waveguide with discretiza-

tion lines.

are formulated. The physical consequence of the second

equation on the dashed lines (Fig. 1) is the validity of the

radiation condition for the tangential component of the elec-

tric field strength eY.

The discretization of (1) and (6) leads to the difference

equations

jn~ ez2 – ezo Po
D~eZ1 + — “ + e~fiezl = O,

2p2 Z2
(8)

eZo – 2eZ1 + eZ2
D~eZ1 + + e~eZ1 = O,

%2
(9)

‘z(N– 1) – 2 ‘zN + ‘z(N+ 1)
D~ezN i- + ~~eZN = 0, (10)

i2

jn~ ‘z(N– 1)
D~eZN – — “

2p2

– ‘Z(N+lJ + ~d~ez~ = 0, (11)

%2

with ~ = h “ k., n ~ = ~ &. Similar expressions can be

found for the corresponding problem on the dashed line

system (7). Combining (8) and (9) as well as (10) and (11),

ezo and ‘z(N+ 1) are eliminated and the difference equation

system can be written as

where ~ is either E= or Hz, which are the discretized field

components combined to a vector. 1 is the identity matrix

and P the corresponding difference matrix

P=

with

Pll P12 P13

–1 2 –1

–i 2“ –1
P13 P12 Pll

(13)

2p2 + (PO –p2)n~ 2p2 – jn~
a=–2 b=–

2p2 +jn~ ‘ 2p2 + jn~

have been used. Notice that a = b = O yields the appropriate

difference matrices for electric walls.

Introducing the difference operators

~dez
-+ De EZ

ax
~ ahz

+ —.DhHz,
ax

(14)

(15)

with

‘e=r::i-:-]
‘h=r‘1“:i -J’16)

the matrix P can be represented as the product

P= = D~De P~ = D,D~. (17)

If P, is of the order IV then Ph is of the order IV+ 1. In

order to solve (12), a transformation to principle axes is

made

+.T~ (18)

with

The eigenvalues X: and eigenvectors T= are calculated nu-

merically. Taking (17) and (19) into account, the solutions of

the eigenvalue problem with P~ are given by

since it can be shown that one eigenvalue is zero. With the

definition of the normalized quasi diagonal (to prove this fact

use (20)) matrices.,

[17.= ?ilDeTe(koh)-’= ““”~”””
e

~fi = T,-lD~Th(koh)-*= O ~e , (21)

p11=2+a, p12= –l–b, P13 = 0,
1: 1

for * = EZ and
the following analysis is done in the same way as described

pll=l+a, p12=–1–b–a, P13 = b, in [4], but h is important to notice, that the eigenvalues and



140

6.40
&
‘e 6.20

6.00

5.80

5.60

5.40

5.20

5.00 1
1 1 1 i I 1 1 1 r I I I 1 1 I 1 1 1 I I 1 1 I 1

0 5 10 15 20 25
a/mm

Fig. 2. Convergence of cre with increasing dktance of boundaries (w = 1

mm, d = 1 mm, Crl = 8.875, f = 5 GHz, 9 lines on the strip). 1:

Absorbing boundaries; 2: metatlic watls.
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Fig. 3. Electric field components I EX I and I Ez I in the plane of the strip,

y = d, (a = 9.88 mm, remaining dimension as in Fig. 2). \ EXO I is the

field component on the line at x = 0.5(a – w – 0.5h). 1: Absorbing
boundaries: 2: metatlic watls.

the transformation matrix must be calculated separately for

each layer. The zero of the determinant of the reduced

system matrix, the effective permittivity e,,, lies in the

complex plane. The imaginary part of e,~ is very small and

due to the fact that the energy outside of the lateral walls is
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absorbed. Whh increasing distance a, refer to Fig. 1, the

imaginary part of C,e decreases to zero,

III. RESULTS

To show the efficiency of absorbing boundary conditions,

the effective permittivity E;, = ‘X6,, of a single microstrip

line has been computed (Fig. 2). The coefficients of the

polynomial have been set to

1
po= 1, P2= ~, (22)

corresponding to a Taylor series approximation of the radical

function. With increasing distance a, refer to Fig. 1, the

value of S2 decreases to zero. Therefore the approximation

of the radical in (5) fits better and better. It is evident, that

metallic walls must be more distant from the strip to achieve

good results. The modulus of the electric field strength in the

plane of the strip is shown in Fig. 3. The curves (1) and (2)

of the field component EX normal to the boundary are nearly

identical, whereas the tangential field component EZ is

nonzero at the position of the absorbing boundary.

IV. CONCLUSION

By the use of absorbing boundary conditions, the method

of lines has been extended to analyse laterally open planar

waveguides. The results show that the boundaries may be

placed closer to the guiding structure whereby the discretized

area and the corresponding matrices become smaller.
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