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Analysis of Planar Waveguides with the
Method of Lines and Absorbing
Boundary Conditions

A. Dreher and R. Pregla

Abstract—The method of lines is extended to analyze planar
waveguides with open boundaries. The efficiency of using ab-
sorbing boundary conditions is demonstrated by the calculation
of the effective permittivity of a single microstrip line.

I. INTRODUCTION

O ANALYZE planar waveguide structures numerically,

they must be enclosed by walls to limit the area of
discretization. The use of electric or magnetic walls produces
errors, since the corresponding tangential field components
are set to zero. Radiation effects cannot be taken into ac-
count. To overcome this difficulty the free space can be
simulated at an arbitrarily fixed position by using absorbing
boundary conditions [1]. In the following these conditions are
adapted to the method of lines [4]. An additional advantage
of the method of lines is, that only two of these boundaries in
the direction of discretization are necessary since the remain-
ing system of ordinary differential equations is solved analyti-
cally.

II. ANALYSIS

A. Factorization of the Helmholtz Operator

Assuming a wave propagation exp(—jk,z) in z-direction,
the wave equation for the two independent field components
can be written as

Ly=(D}+D2+¢,)y =0

(1)

with
32 32
2 _ 2 _
Dx:ﬁ’ Dy=5‘y-5, €g = €, — €,
and the normalizations
2
kz

.§=X'k0, 7=y'k0, ere=7€—2’
0

where ¢ stands for e, or k_, respectively. The Helmholtz
operator L can be factored so that

Ly =L*L ¢y =0

(2)
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with
D?
L*=Dy % j\Je, V1 + 82 82 = —.
€q

Since in general €, will be complex, the branch cut of the
square root function must be chosen so that the plus sign is
related to waves traveling in the x-direction, the minus sign
to those traveling in the —x-direction. Hence the condition
for outgoing waves is.

Re, >0
3 Ves <0

holds for exponentially decaying waves if R
propagation takes place. The conditions

L™=0

while

e; = 0 and no

(3)
at the left and
L*=0

(4)
at the right boundary exclude solutions of (1) which are
related to waves traveling backward. This is in accordance
with Sommerfeld’s condition of radiation [3]. In this way, (3)
and (4) simulate exactly absorbing boundaries for waves
incident at any angle from the interior of the enclosed
structure.

B. Discretization

To use these boundary conditions in connection with the
method of lines, the radical is approximated by a polynomial
of the form

V1+ 8% =p, + p,S? (5)

on the interval [—1,1]. The choice of the coeflicients p, and
D, depends on the method of interpolation and determines the
two angles of exact absorption [2]. To keep the advantageous
procedure with shifted line systems [4] the boundary condi-
tions

, VE D
(D§ eS| 2" D, + p_ze"’ e, = (6)
. VE€a Po ah,
D? Fj D, + —¢ = 7
( y D, x D, d) dx ()
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Fig. 1. Cross section of investigated microstrip waveguide with discretiza-

tion lines.

are formulated. The physical consequence of the second
equation on the dashed lines (Fig. 1) is the validity of the
radiation condition for the tangential component of the elec-
tric field strength e,,.

The discretization of (1) and (6) leads to the difference
equations

jn e.,—¢e P
Die,+ 222 4L =0, (8
2p, h D,
e~ 2e, t+e,
D;ezl + + Edezl = 0, (9)

712

exn-1 — 2€;n T exnty

D;ezN -+ ZZ + EdezN = 0, (10)
Jng  exn-1 ~ exn+n Do

D;ezzv_ 2p = 2 : + Earp_ezN= 0, (11)
2 2

with & = h - ky,n; = h\/e,. Similar expressions can be
found for the corresponding problem on the dashed line
system (7). Combining (8) and (9) as well as (10) and (11),
e, and e, ., are eliminated and the difference equation
system can be written as

(D} —h*P+e,d)y =0,

(12)

where ¢ is either E, or H,, which are the discretized field
components combined to a vector. I is the identity matrix
and P the corresponding difference matrix

Punu P P
-1 2 -1
P= ’ - (13)
-1 2 -1
Dz D Pn
with
Pu=2+a, Pp=-1-0b, Pz =0,
for ¥ = E, and
p11=1+a9 p12=—1—b—a’ p13=b’
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for ¢ = H,. Moreover the abbreviations

_22P2 + (Po - p2)n2d
2p, + jny

_ 2p, —Jjng
2p, +jn,

have been used. Notice that @ = b = 0 yields the appropriate
difference matrices for electric walls.
Introducing the difference operators

Zaez D,E 14
— -
dx e (14)
_0h,
e~ -D,H, (15)
with
[1+a -b
-1 1
D, = ) e
-1 1
L b ~-1-a
1 -1
D, = I , (16)
| 1 -1
the matrix P can be represented as the product
P,=D,D, P,=D,D,. (17)

If P, is of the order N then P, is of the order N + 1. In

order to solve (12), a transformation to principle axes is
made

(18)
with
T-'PT = X.

(19)

The eigenvalues N and eigenvectors 7, are calculated nu-
merically. Taking (17) and (19) into account, the solutions of
the eigenvalue problem with P, are given by

1
N+1
)3,,=[0 )\2]Th= _ D, T,N,' |, (20)
1
| N+ T |

since it can be shown that one eigenvalue is zero. With the
definition of the normalized quasi diagonal (to prove this fact
use (20)) matrices

_ _ e Qe
de= Th_IDeTe(kOh) ' =[ by :|

d, = T;'D,T,(koh)'= |0 X (21)

e b

the following analysis is done in the same way as described
in [4], but it is important to notice, that the eigenvalues and
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Fig. 2. Convergence of ¢,, with increasing distance of boundaries (w = 1
mm, d=1 mm, ¢, =8875 f=35 GHz, 9 lines on the strip). 1:
Absorbing boundaries; 2: metallic walls.
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Fig. 3. Electric field components | E, | and | E, | in the plane of the strip,
y =d, (a = 9.88 mm, remaining dimension as in Fig. 2). | E,q| is the
field component on the line at x = 0.5(a — w — 0.5k). 1: Absorbing
boundaries; 2: metallic walls.

the transformation matrix must be calculated separately for
each layer. The zero of the determinant of the reduced
system matrix, the effective permittivity e, lies in the
complex plane. The imaginary part of e,, is very small and
due to the fact that the energy outside of the lateral walls is
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absorbed. With increasing distance a, refer to Fig. 1, the
imaginary part of €,, decreases to zero.

III. ResuLTs

To show the efficiency of absorbing boundary conditions,
the effective permittivity ¢, = Re,, of a single microstrip
line has been computed (Fig. 2). The coefficients of the
polynomial have been set to

1
> (22)

=1,
Do )

p, =
corresponding to a Taylor series approximation of the radical
function. With increasing distance a, refer to Fig. 1, the
value of S? decreases to zero. Therefore the approximation
of the radical in (5) fits better and better. It is evident, that
metallic walls must be more distant from the strip to achieve
good results. The modulus of the electric field strength in the
plane of the strip is shown in Fig. 3. The curves (1) and (2)
of the field component E, normal to the boundary are nearly
identical, whereas the tangential field component E, is
nonzero at the position of the absorbing boundary.

IV. ConcLusioN

By the use of absorbing boundary conditions, the method
of lines has been extended to analyse laterally open planar
waveguides. The results show that the boundaries may be
placed closer to the guiding structure whereby the discretized
area and the corresponding matrices become smaller.
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